You might have heard of the conundrum “What do you give the man who has everything?” I discovered a variation on it last October: how do you celebrate the man who studied (nearly) everything? Physicist Edwin Thompson Jaynes impacted disciplines from quantum information theory to biomedical imaging. I almost wrote “theoretical physicist,” instead of “physicist,” but a colleague insisted that Jaynes had a knack for electronics and helped design experiments, too. Jaynes worked at Washington University in St. Louis (WashU) from 1960 to 1992. I’d last visited the university in 2018, as a newly minted postdoc collaborating with WashU experimentalist Kater Murch. I’d scoured the campus for traces of Jaynes like a pilgrim seeking a saint’s forelock or humerus. The blog post “Chasing Ed Jaynes’s ghost” documents that hunt.
I found his ghost this October.
Kater and colleagues hosted the Jaynes Centennial Symposium on a brilliant autumn day when the campus’s trees were still contemplating shedding their leaves. The agenda featured researchers from across the sciences and engineering. We described how Jaynes’s legacy has informed 21st-century developments in quantum information theory, thermodynamics, biophysics, sensing, and computation. I spoke about quantum thermodynamics and information theory—specifically, incompatible conserved quantities, about which my research-group members and I have blogged many times.
Irfan Siddiqi spoke about quantum technologies. An experimentalist at the University of California, Berkeley, Irfan featured on Quantum Frontiers seven years ago. His lab specializes in superconducting qubits, tiny circuits in which current can flow forever, without dissipating. How can we measure a superconducting qubit? We stick the qubit in a box. Light bounces back and forth across the box. The light interacts with the qubit while traversing it, in accordance with the Jaynes–Cummings model. We can’t seal any box perfectly, so some light will leak out. That light carries off information about the qubit. We can capture the light using a photodetector to infer about the qubit’s state.
Bill Bialek, too, spoke about inference. But Bill is a Princeton biophysicist, so fruit flies preoccupy him more than qubits do. A fruit fly metamorphoses from a maggot that hatches from an egg. As the maggot develops, its cells differentiate: some form a head, some form a tail, and so on. Yet all the cells contain the same genetic information. How can a head ever emerge, to differ from a tail?
A fruit-fly mother, Bill revealed, injects molecules into an egg at certain locations. These molecules diffuse across the egg, triggering the synthesis of more molecules. The knock-on molecules’ concentrations can vary strongly across the egg: a maggot’s head cells contain molecules at certain concentrations, and the tail cells contain the same molecules at other concentrations.
At this point in Bill’s story, I was ready to take my hat off to biophysicists for answering the question above, which I’ll rephrase here: if we find that a certain cell belongs to a maggot’s tail, why does the cell belong to the tail? But I enjoyed even more how Bill turned the question on its head (pun perhaps intended): imagine that you’re a maggot cell. How can you tell where in the maggot you are, to ascertain how to differentiate? Nature asks this question (loosely speaking), whereas human observers ask Bill’s first question.
To answer the second question, Bill recalled which information a cell accesses. Suppose you know four molecules’ concentrations: , , , and . How accurately can you predict the cell’s location? That is, what probability does the cell have of sitting at some particular site, conditioned on the s? That probability is large only at one site, biophysicists have found empirically. So a cell can accurately infer its position from its molecules’ concentrations.
I’m no biophysicist (despite minor evidence to the contrary), but I enjoyed Bill’s story as I enjoyed Irfan’s. Probabilities, information, and inference are abstract notions; yet they impact physical reality, from insects to quantum science. This tension between abstraction and concreteness arrested me when I first encountered entropy, in a ninth-grade biology lecture. The tension drew me into information theory and thermodynamics. These toolkits permeate biophysics as they permeate my disciplines. So, throughout the symposium, I spoke with engineers, medical-school researchers, biophysicists, thermodynamicists, and quantum scientists. They all struck me as my kind of people, despite our distribution across the intellectual landscape. Jaynes reasoned about distributions—probability distributions—and I expect he’d have approved of this one. The man who studied nearly everything deserves a celebration that illuminates nearly everything.
Comments